Sitzung: Jeden Freitag in der Vorlesungszeit ab 16 Uhr c. t. im MAR 0.005. In der vorlesungsfreien Zeit unregelmäßig (Jemensch da?). Macht mit!

Lösungen TheGI TI Probeklausur vom 19.01.06

Für die Lösungen wird natürlich keine Garantie übernommen. Der Assistent (Sebastian Bab?) war sich beim Vorrechnen oft selbst nicht sicher...

Aufgabe 1

im Lückentext einsetzen: endliche, endlich, abzählbar unendlich, endlich, abzählbar unendlich, Mächtigkeit, Mächtigkeit, überabzählbar

Aufgabe 2

a ∈ Σ Σⁱ = Σ ε ∉ Σ+ ε ∈ Σ*
ø ⊆ Σ+ ø ⊆ Σ* a ∈ Σ* {ε} ∉ Σ*
Σ² ⊆ Σ* ø ∈ P(Σ*) {ε} ∈ P(Σ*) Σ² ∈ P(Σ*)
{aa,bb,ab,ba} = Σ² {xab : x ∈ Σ*} = {x ∈ Σ* : x endet mit ab}
{ab,bb,aba} ⊆ Σ* {axab : x ∈ Σ*} ⊆ {x ∈ Σ* : x endet mit ab}

Aufgabe 3

  1. {x ∈ Σ*; x beginnt mit a und endet mit b}
  2. {x ∈ Σ*; x beginnt mit a oder b}
  3. {x ∈ Σ*; x beginnt mit a oder b oder ist das leere Wort}
  4. {x ∈ Σ*; x beginnt nicht mit a}
  5. {ø,{a},{b},{a,b}}
  6. {(a,a),(a,b),(b,a),(b,b)}

Aufgabe 4

hier müßte man irgendwie Bilder hochladen können...

Aufgabe 5

a) L2 = {x ∈ Σ*; x beginnt mit ab}
b)
a b
→q0 q1 q3
q1 q3 q2
*q2 q2 q2
q3 q3 q3
c) einfach nur normale und Endzustände vertauschen

Aufgabe 6

a) L3 = {x ∈ Σ*; x = (anb)*am; n,m ≥ 1} dies ist meine Lösung. Über diese Aufgabe wurde lange diskutiert ohne dass etwas Vernünftiges heraus kam.
b)
a b
→q0 q1 -
*q1 q1 q0
c) Der Trick ist, dass der DEA erst in einen totalen DEA umgeform werden muß. D.h. man muß einen Zustand q2 hinzufügen, der von q0 aus mit dem b erreicht wird. Danach wie bei Aufgabe 5 einfach die Zustände invertieren.

Aufgabe 7

a) L4 = {x ∈ Σ*; x endet mit a}
b) bild einfügen
c)
a b
→q0 {q1,q0} {q0}
*q1 ø ø

Aufgabe 8,9,10

Lösungen werden in einer kommenden Vorlesung nachgereicht

Aufgabe 11

(Fortsetzung des Ansatzes) Da das Wort w mehr Zeichen enthält als der Automat Zustände hat, muß bei der Ableitung von w ein Zustand in A mindestens 2x besucht worden sein. Sei qs der erste Zustand in der Ableitung von w, bei dem dies auftritt.
Zerlege w wie folgt: w=xyz mit:
  • x ist das Wort, welches bis zum ersten Auftreten von qs von A gelesen wird.
  • y ist das Wort, welches vom Automaten in der Schleife von qs nach qs gelesen wird.
  • z ist der Rest des Wortes w.
Es gelten die drei Eigenschaften des Pumping-Lemmas:
  1. y ≠ ε : offensichtlich, da jede Schleife mindestens eine Zahl beinhaltet.
  2. |xy| < n : gilt, da wir die erste Schleife in A gewählt haben.
  3. xykz in L : Schleifen können mehrfach oder gar nicht abgearbeitet werden.

Aufgabe 12

a) wähle n=5
b) w=abaaa ; x=ab, y=a, z=aa; xy3z=abaaaaa

Aufgabe 13

(weiter nach Ansatz) Nach Definition des Pumping-Lemma läßt sich w in w=xyz zerlegen. Nach Eigenschaft (2) des PL kann der Teil xy nur aus a's bestehen. y ist mindestens ein a. Nach (3) ist dann auch das Wort xy2z ∈ L. Für dieses Wort gilt aber xy2z = an-|y|a|y|+|y|an. Da n-|y|+|y|+|y| = n+|y| ≠ n gilt, stehen zu Beginn des Wortes mehr a's als am Ende → Widerspruch!

Aufgabe 14

a) bilder...
b)
  1. S⇒ aS⇒ aaSbS⇒ aaaSbSbS⇒ aaabSbS⇒ aaabbS⇒ aaabb
  2. S⇒ aSbS⇒ aaSbS⇒ aaaSbSbS⇒ aaabSbS⇒ aaabbS⇒ aaabb

Aufgabe 15

von oben nach unten
  • Typ-0; allgemeine
  • Typ-1; kontext-sensitive
  • Typ-2; kontext-freie
  • Typ-3; reguläre

Aufgabe 16

Lückentext: Die Chomsky-Hierarchie klassifiziert die durch Grammatiken erzeugbaren Sprachen über Eigenschaften der Produktionsregeln der Grammatiken. Eine Grammatik G ist ein Tupel G = (Σ,V,S,P), wobei Σ ein Alphabet, V eine Menge von Variablen, S die Startvariable und P eine Menge von Produktionsregeln ist.
Die Klasse der regulären Sprachen enthält Sprachen, die über ... Grammatiken gebildet werden können. Eine Grammatik heißt ..., wenn alle ihre Produktionsregeln uvP die Eigenschaften u ∈ V sowie v Σ oder v Σ ο V erfüllen. Ein Beispiel einer typischen regulären Sprache ist die Sprache Lrg = {an | n ≥ 1}. Reguläre Sprachen können entweder endlich oder unendlich sein. Die Klasse der endlichen Sprachen bildet hierbei eine Teilklasse der regulären Sprachen. Reguläre Sprachen werden von enlichen Automaten erkannt. Endliche Automaten können deterministisch oder nichtdeterministisch sein. Die Klasse der von deterministischen endlichen Automaten akzeptierten Sprachen ist hierbei gleich der Klasse der von nichtdeterministischen endlichen Automaten akzeptierten Sprachen.
Die kontextfreien Sprachen werden durch solche Grammatiken gebildet, deren Produktionsregeln uvP die Form uV sowie v (Σ∪V)* haben. Damit ist natürlich jede reguläre Grammatik auch eine kontextfreie Grammatik. Ein typisches Beispiel einer kontextfreien Sprache ist Lkf = {anbn|n > 1} . Jede kontextfreie Grammatik G läßt sich durch geeignetes Umformen der Regeln der Grammatik in eine Grammatik G ' in Chomsky-Normalform konvertieren. Die von G und G ' erzeugten Sprachen sind hierebi gleich. Die Produktionsregeln uvP von Grammatiken in Chomsky-Normalform sind hierbei von der Form uV und v Σ oder u V undv V ο V. Kontextfreie Sprachen werden von deterministsischen oder nichtdeterministischen Kellermaschinen erkannt. Die Klasse der don deterministischen Kellermaschinen akzeptierten Sprachen ist hierbei ungleich der Klasse der von nichtdeterministischen Kellerautomaten akzeptierten Sprachen. Palindrome sind Worte über einem Alphabet, die von vorne gelesen das selbe Wort ergeben wie von hinten gelesen. Die Sprache der Palindrome mit Trennzeichen läßt sich hierbei auch von deterministischen Kellermaschinen akzeptieren, wohingegen die Sprache der Palindrome ohne Trennzeichen nur von nichtdeterministischen Kellermaschinen akzeptiert wird.
Die kontextsensitiven Sprachen werden durch solche Grammatiken gebildet, deren Produktionsregeln uvP die Eigenschaft u (Σ∪V)*οVο(Σ∪V)* und v(Σ∪V)* mit |u| |v| erfüllen. Ein Beispiel einer typischen kontextsensitiven Sprache ist Lks = {anbncn| n ≥ 1}
Die allgemeinen Sprachen werden ebenfalls über Grammatiken gebildet, wobei die Produktionsregeln dieser Grammatiken keinen Einschränkungen unterliegen. Ein typisches Beispiel einer allgemeinen Sprache ist das Halteproblem.

Aufgabe 17